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ABSTRACT 

It is well known that the numerical accuracy of a series solution to a boundary-value 
problem by the direct method depends on the technique of approximate satisfaction 
of the boundary conditions and on the stage of truncation of the series. On the other 
hand, it does not appear to be generally recognized that, when the boundary conditions 
can be described in alternative equivalent forms, the convergence of the solution is 
significantly affected by the actual form in which they are stated. The importance of 
the last aspect is studied for three different techniques of computing the deflections 
of simply supported regular polygonal plates under uniform pressure. It is also shown 
that it is sometimes possible to modify the technique of analysis to make the accuracy 
independent of the description of the boundary conditions. 

INTRODUCTION 

In any boundary-value problem, a solution is sought which satisfies the governing 
differential equation and boundary conditions of the problem. Where an exact 
solution is not available, one chooses approximate solutions. In the direct (or 
boundary) method of approximate analysis, a series which satisfies the differential 
equation exactly at all stages of truncation is chosen and the boundary conditions 
are satisfied approximately. It is well known that the accuracy of such a solution 
depends on the technique of approximate satisfaction of the boundary conditions 
and on the stage of truncation of the series. On the other hand, it does not appear 
to be generally recognized that, when the boundary conditions can be described 
in alternative equivalent forms, the convergence of the solution is significantly 
affected by the actual form in which they are stated [I]. In this paper, the impor- 
tance of the last aspect is studied for three different techniques (collocation, 
Taylor expansion, and successive integration of boundary errors) of analyzing the 
deflection of simply-supported regular polygonal plates under uniform transverse 
load. It is also shown that one may be able to avoid the difficulty of identifying the 
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“best description” by evolving a special procedure which eliminates the influence 
of the parameter generating the alternative descriptions. 

SERIES SOLUTION FOR A POLYGONAL PLATE 

Consider a regular polygonal plate with n sides and n axes of symmetry, subjected 
to a uniform transverse pressure 4 as shown in Fig. 1. a, the radius of the inscribed 
circle serves as a characteristic length. The flexural stiffness of the plate is D [2]. 

4X 

B 

FIG. 1. Coordinate system for regular polygon. 

The deflection function w for the middle surface of the plate should satisfy the 
differential equation 

D*v4w=q (1) 

or, in terms of the nondimensional deflection parameter g = Dw/qa4, 

v4w = 1/a* (14 

and also the boundary conditions on the edges. 
Taking advantage of the n-fold cyclic symmetry, a series solution for Eq. (la) 

can be conveniently written, in polar coordinates (r, 0) as 

M-l 

ii = r4/64a4 + 2 (Am + II,/) rmn - cos mn8 
TX=0 

(2) 

where A,,, , B, are unknown parameters to be determined by satisfying the 

581/3/z-3 
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boundary conditions on the straight edges and M represents the stage of truncation 
of the series or the order of approximation. 

STATEMENT OF BOUNDARY CONDITIONS FOR SIMPLY SUPPORTED EDGES 

The normal and tangential moments on the edges are given [2] by A& = 
-D(wnn + vwt*) and Mt = -D(wtt + VW,,) where v is the Poisson’s ratio of the 
material. Then, the boundary conditions for a simply supported edge, say 
AB(x = a), are 

E=O (3) 

and 
M, = -quyw,, + ViJ,,) = 0 

or 
iv,, + vii& = 0 (4) 

As the edge AB is rectilinear, using the first condition (3), the second boundary 
condition (4) can be written in one of the alternative forms, 

i-v,, = 0 (implying M, - vikl, = 0) (44 

and 
pii = 0 (implying M, + My = 0) WI 

or, more generally, as 

w,, + KGv, = 0 (implying M, + KIM, = 0), (4c) 

where K is any arbitrary constant and K1 = (K - v)/(l - vK). 
The forms of the governing differential equation (la) and the boundary con- 

ditions (3) and (4), clearly show that, for simply supported rectilinear plates, 
J is independent of v. Obviously, this statement is not applicable if the plate 
boundary is curvilinear-circular or otherwise-in part or in full. 

If an exact solution were feasible, the actual value attributed to Kin the general 
form, Eq. (4c), is immaterial. But when an approximate series solution is sought 
by a boundary method, the boundary errors may be expected to depend on the 
specific value of K chosen. 

Substitution of the deflection function (2) into Eqs. (3) and (4~) yields the 
boundary error equations, 

[ 

M-l 

r4/64d + c (Am + B,r2) rmn cos md = 0 
m-0 1 21-a 
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and 

[?{(I + 3K) + 2(1 - K) co9 8)/16d1 
M-l 

+ (1 - K) c A,mn(mn - 1) rmn-l cos(mn - 2)8 

M-l 

+ c B,,,(mn + 1) rmn{2(1 + K) cos mm? + (1 - K) mn cos(mn - 2)0}]+, = 0. 
?n=o 

(6) 

THREE METHODS FOR SATISFACTION OF THE BOUNDARY CONDITIONS 

For purposes of the present study, three different methods, viz. (a) collocation, 
(b) Taylor expansion, and (c) successive integration of boundary errors, are applied 
for the satisfaction of the error Eqs. (5) and (6). 

(a) Collocation: In the simple collocation procedure, the boundary 
conditions (5), (6) are satisfied at discrete points. For convenience, a suitable 
number of equidistant points are chosen in the semi-edge AB. For a convergence 
study, the number of such points is increased successively. 

(b) Taylor expansion: In the Taylor expansion procedure, one sets to zero 
the first few tangential derivatives of the boundary errors at B. This is con- 
veniently achieved by the following procedure. 

The errors are expressed in a polynomial series in y and Eqs. (5) and (6) are 
written as 

M-1 
(a4 + 2aay2 + y4)/64a4 + c amflAm i (- l)~C~;~+~y~* 

WI=0 P=O 

[(3 + K) a2 + (1 + 3K) y21/16d' 
M-l P-l 

+ (1 - K) c A,mn(mn - 1) 6mne2 c (- l)V&~%-~py~p 
W&-O P=O 

+ y B,(mn + 1) dmn [2(1 + K) i (-1)pC~u-zpy2~ 
m=o p=0 

P-1 

+ (1 - K)mn C (-l)p{Cll”,“-z - 
P=O 

C~~~~}a-yq = 0, (7b) 

where P represents the integer mn/2 or (mn - I)/2 as appropriate. 
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The aggregate coefficient of each power of y, in each of the equations, is set 
equal to zero. Thus one develops the following twin systems of simultaneous 
equations in A, and B, 

M-1 M-l 

c am”AmC2”,” + c amn+zBnL(Cg - Cg-J = (- l)‘+rC;2/64 
W&=0 VI%=0 

and 
(p = 0, 1, 2,...) (84 

M-l 

(1 - K) c d’@Ammn(mn - 1) Cr;-2 
m=0 

M-l 
+ C amnBm(mn + 1)[2(1 + K) Cg + (1 - K)mn(C’$an-2 - C?;Zs?l 

W-0 

= (- l)“+la2”{(3 + K) Ci+,a2 + (1 + 3K) C’i-,}/16a4 

(p = 0, 1, 2 )... ). @b) 

It may be noted that the R.H.S. in Eqs. (8a) and (8b) are zero when p > 2. 
For the &h-order approximation M = s + 1. 

(c) Successive integration: In this method, the error equations (5) and (6) 
are successively integrated along the boundary to obtain the requisite set of 
simultaneous equations in the arbitrary parameters A, , B, . The 8th pair of 
equations in the set are 

[ M-l 

(r4/64a4) + c (A, + B,r2) rmn cos mnd I W)” 
m=o z=a 

= [a”(t”/s!) + 4a2ts+2/(s + 2)! + 24t8+4/(s + 4)!]/64a4 

M-l 

+ c amnAm i (- l),C~~a-2,,2,+8(2,)!(2p + 3) 1 
m=O lk0 

M-1 
+ C 6”*B, 5 (-l)p * C,“,“a-2p[a2t2v+8(2p)!/(2p + s)! 

Vi%=0 P=O 

+ t2’+8+2(2p + 2)!/(2p + s + 2)!] = 0 (9) 
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and 

j: -** jl j; [r”{(l + 3K) + 2(1 - K) cos2 8}/16a4 

M-1 
+ (1 - K) 1 A,mn(mn - 1)rmn-Z cos(mn - 2>e 

WZ=O 

M-l 
+ C B,(mn + l)r”“{2(1 + K) cos mn8 

WZ=O 

+ (1 - K) mn cos(mn - 2)~9}] (dy)” 
iz=ll 

= [(3 + K)a2ts/s! + 2(1 + 3K) P+~/(s + 2)!]/16a4 

M-1 
+ (1 - K) 1 A,mn(mn - 1) umn-2 

?TL=O 

P-l 

x 1 (- 1)9C&+-2a+W+S(2p) !/(2p + s) ! 
p=0 

+ Mf’ BJmn + 1) dmn [2(1 + K) 2 (-1)*C~~%~~+~(2,>!/(2p + s)! 
W&=0 p=o 

P-l 

+ (1 - K) mn C (- 1)pC~;-2{u-2*f2p+S(2,>!/(2p + s)! 
p=o 

+ a-2p-V+s+2(2p + 2)!/(2p + s + 2)!}] = 0, 

where t = tan(+z). 

(10) 

An &h-order approximation is obtained from this set of simultaneous equations 
by going up to M = s. 

CONVERGENCE STUDIES 

Numerical analysis is carried out for different orders of regular polygons of a 
material with v = 0.3. Polygons of up to 100 sides in some cases and of up to 
15 sides in other cases are investigated. Convergence of solution is studied for four 
values of K, viz. 0,0.3, 1.0, and 1.5. It is of interest to note that 0.3 represents the 
physical conditions of zero normal edge moment (Mn = 0 on x = a) and 1.0 
represents the physical condition of zero sum of normal and tangential edge 
moments (44% + Mt = 0 on x = a). For all the cases, the unknown parameters, 
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A B, are determined for various orders of approximation (M = 2, 3,..., 9). 
Tee’ value of A, yields the central deflection parameters W, for the plate. The 
convergence of this value as a function of K, n and M is studied for the three 
methods. 

Collocation 

Results obtained by the collocation procedure are shown in Fig. 2. The trends 
in this figure would indicate that (a) with K ,< 1, the solution converges from 
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FIG. 2. Convergence of collocation procedure with different values of K: central deflections. 

above, the convergence becoming slower with increasing number of sides; (b) with 
K > 1, the solution converges from below, the convergence again worsening with 
increasing number of sides ; (c) the convergence improves as K ---+ 1 from either side; 
and (d) K = 1 yields very rapid convergence so that a g-term solution is highly 
accurate even for many-sided polygons with a hundred or more sides. By com- 
parison of the results for K = 1, with the exact values which are evaluated from [3] 
and given in Table I, it is found that the 2-term solution is in error by 3.5 % for 
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TABLE I 

ACCURACY OF IiPPROxIMATE SOLlJlTONS WITH K = 1: 
COMPARISON WITH EXACT VALIJIB EVALUATED FROM [3] 

n 
Collocation 

2 terms 9 terms 
Successive Integration 

2 terms 8 terms Exact Values [3] 

4 0.067OOi.l 0.064998 
5 0.060199 0.058070 
6 0.056450 0.054575 
7 0.054120 0.052531 
8 0.052560 0.051220 

10 0.050656 0.049683 
15 0.048656 0.048151 
40 0.047148 0.047063 

100 0.046920 0.046906 

0.065086 0.064998 
0.058191 0.058069 
0.054678 0.054572 
0.052610 0.052526 
0.051280 0.051215 
0.049718 0.049678 
0.048162 0.048147 

- - 

0.064998 
0.058067 
0.054571 
0.052525 
0.051214 
0.049677 
0.048147 
0.047061 
0.046905 

6 sides, 1.1% for 15 sides and 0.04 % for 100 sides, while the errors in the g-term 
solution are as small as 0.011 % for 6 sides, 0.0083 % for 15 sides and 0.0021% 
for 100 sides. The corresponding errors using the M,, = 0 condition (K = 0.3) are 
ashighas8.5%,24.9%,34.7%,forM=2and0.36%,11.4%,30.9%forM= 9. 

Successive Integration 

The results by the successive integration procedure are presented in Fig. 3. 
The value of K is found to have the same influence on convergence as in the 
collocation procedure except that the absolute accuracy of the successive integration 
method is found to be significantly superior (see Tables I and II or compare Figs. 2 
and 3). With K = 1, the errors in i?, by a 2-term solution are only 0.18 % for 
n=6andO.O2%forn= 15. 

Taylor Expansion 

The convergence trends for W, obtained for a hexagon (n = 6) with the four 
values of K are presented in Table II. In the studies up to M = 9, the results 
oscillate unsatisfactorily when K = 0, 0.3 and 1.5. On the other hand, with K = 1, 
iQC does decrease monotonically, and rapidly towards the exact value. Similar 
trends were observed for the other values of n investigated (upto n = 100). As in 
the other two procedures, the convergence, in general, deteriorates with 
increasing n. 
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FIG. 3. Convergence of successive integration procedure with different values of K: central 
deflections. 

TABLE II 
DATA TO CON~RM EFFECT OF K ON CONVERGENCE 

APPROXIMATIONS FOR CENTRAL DEFLECTION Z& FOR A HEXAGON (n = 6), 
EXACT VALUE BEING 0.054571 

1 2 3 4 5 6 7 8 
___. __~- 

Successive 
TAYLOR EXPANSION Collocation Integration 

\ 

--___-~ 
K 

0 0.3 1.0 1.5 Implicitly 1.0 I .o 
A4 Eliminated 

2 0.06823 0.06054 0.05336 0.05455 0.04896 0.05645 0.0546780 
3 0.06931 0.05946 0.05412 0.05323 0.05359 0.05479 0.0545806 
4 0.10366 0.05955 0.05434 0.05306 0.05418 - 0.0545743 
5 0.04023 0.06103 0.05443 0.05310 0.05436 0.05460 0.0545728 
6 0.04963 0.06966 0.05448 0.05317 0.05444 0.0545724 
7 0.05193 0.03914 0.05450 0.05325 0.05448 - 0.0545722 
8 0.05290 0.05038 0.05452 0.05333 0.05451 0.0545721 
9 0.05341 0.05237 0.05453 0.05339 0.05452 0.05458 
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Thus the results from all three procedures, those from the Taylor expansion 
procedure most emphatically of all, lead to an important conclusion. The choice 
of a value for the arbitrary constant Kin the description of the boundary conditions 
has very substantial influence on the convergence of the solution-the apparently 
natural value of 0.3 yield slow convergence, whereas the value of 1.0, which 
appears artificial at first sight, yields the best convergence. 

A METHOD OF ELIMINATING THE INFLUENCE OF K 

From the above discussion, it is clear that the convergence of the solution is 
best for one particular description of the boundary condition among a full spectrum 
of alternatives. Most times, it is not easy to identify such a “best description” by 
physical reasoning so that an extensive numerical investigation is needed. The 
question arises whether one cannot really eliminate the influence of the arbitrary 
parameter involved so as to sidestep the question of identifying the best value for 
the parameter. In the problem under consideration such a procedure is possible 
when applying the Taylor expansion method. The solution can be made inde- 
pendent of K by a judicious selection of the sequence of simultaneous equations 
to be solved for A, , B?,, . 

Consider the sets of Eqs. (8a) and (8b). Choosing the first two equations from (8a) 
and only the first from (8b) one has 

and 

c a,,A,n + g amn+2B, = -l/64, 
m 

c a,,CyAm + 1 am12+2(Crn - 1) B, = l/32, 
m m 

(1 - K) c amlaM2mn(mn - 1) A, 
171. 

+ 1 amn(mn i- 1){2(1 + K) + (1 - K) mn} B, = -(3 + K)/16a2. 
m 

One notices that they form a set given by 

w=o 

wvu = 0 
[from (8a) ] 

and 

W,, + Kii&, = 0 [from (8b)] 

(1 la> 

(lib) 

(1 lc) 

(124 
(12b) 

WC) 
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Because of Eqs. (12b) and (12c), it is obvious that the solution to this set of 
three simultaneous equations is independent of the parameter K. The same is 
easily shown to be true for any solution obtained by using the first M equations 
from the set (8a) and first (A4 - 1) equations from the set (8b). Hence it can be 
concluded that, if the Taylor expansion method is modified by taking the first M 
equations from (8a) and only the first (A4 - 1) equations from (8b) and solving 
these (2M - 1) equations for (A,, A, ,..., AM-,, B,, , Bl ,..., B,+&, the resulting 
solution at any stage of approximation M, is independent of K. The success of 
this procedure is evident from col. 6 Table II (for n = 6). 

SIGNIFICANCE OF SUPERIORITY OF REWLTS WITH K = 1 

It has been noted that convergence of solutions is best with K = 1. One would 
naturally like to have an explanation for this. To appreciate the problem, it may 
be worth digressing and examining KirchoE’s treatment of a free edge [2]. On 
such an edge, from physical considerations, one can specify three independent 
boundary conditions viz., M,, = 0, Q,, = 0 and Mnt = 0. However, due to a 
mathematical inadequacy in the thin plate formulation, one can satisfy only two 
independent conditions. To do so, one may coalesce Q,, = 0 and Mnt = 0 into a 
single condition (Qn + K an/l,,/&) = 0 where K is any arbitrary constant. From 
a variational approach, Kirchoff arrived at unity as the most appropriate value 
for K. Thomson and Tait confirmed the appropriateness of this by physical 
reasoning. 

In the case of a simply supported straight edge, one would readily see that there 
are again three independent homogeneous conditions J = 0, M, = 0, Mt = 0 
whereas only two can be explicitly stated and satisfied. Hence, following the 
analogy with the free edge, one would coalesce M, = 0 and Mt = 0 into the single 
condition (M, + KM,) = 0. The present numerical investigation has shown that 
unity is the most appropriate value for K. That is, it is best to describe the edge 
moment condition as the zero condition for the variant (M, + MJ. It would be 
instructive to investigate the physical and mathematical reasons for this result. 

COMPUTATIONAL ACCURACY OF DATA 

The collocation and Taylor expansion solutions were programmed in autocode 
and computed on a Ferranti Sirius computer working with 8 significant figures. 
The successive integration procedure was programmed in FORTRANIV and solved on 
a CDC-3600 Computer working with 15 significant figures. It has been checked that, 
in all the final results, roundoff errors occur only beyond the fifth significant figure. 
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CONCLUDING REMARKS 

With an example, it has been demonstrated that, where alternative equivalent 
descriptions of boundary conditions are possible, satisfactory and reliable con- 
vergence of the series solution by the direct method may depend upon the choice 
of the boundary condition. Two significant conclusions in respect of thin-plate 
theory may be drawn as incidental to this study. Corresponding to the Kirchoff 
conditions for free edges, one has the modified conditions J = 0, V2W = 0 to 
satisfactorily represent simple supports for rectilinear edges. The experience with 
free edges and simply supported straight edges would suggest that proper descrip- 
tions of boundary conditions for different types of supports may need further 
investigation from the point of view of convergence of series solutions. 
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